博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Brackets (区间DP)
阅读量:4873 次
发布时间:2019-06-11

本文共 2657 字,大约阅读时间需要 8 分钟。

目录

Brackets (区间DP)

题目

We give the following inductive definition of a “regular brackets” sequence:

the empty sequence is a regular brackets sequence,

if s is a regular brackets sequence, then (s) and [s] are regular brackets sequences, and
if a and b are regular brackets sequences, then ab is a regular brackets sequence.
no other sequence is a regular brackets sequence
For instance, all of the following character sequences are regular brackets sequences:

(), [], (()), ()[], ()[()]

while the following character sequences are not:

(, ], )(, ([)], ([(]

Given a brackets sequence of characters a1a2 … an, your goal is to find the length of the longest regular brackets sequence that is a subsequence of s. That is, you wish to find the largest m such that for indices i1, i2, …, im where 1 ≤ i1 < i2 < … < im ≤ n, ai1ai2 … aim is a regular brackets sequence.

Given the initial sequence ([([]])], the longest regular brackets subsequence is [([])].

Input

The input test file will contain multiple test cases. Each input test case consists of a single line containing only the characters (, ), [, and ]; each input test will have length between 1 and 100, inclusive. The end-of-file is marked by a line containing the word “end” and should not be processed.

Output

For each input case, the program should print the length of the longest possible regular brackets subsequence on a single line.

Sample Input

((()))
()()()
([]])
)[)(
([][][)
end
Sample Output
6
6
4
0
6

题意

输出能够匹配的最多的括号个数

思路

由小区间的数量推出大区间的括号数量

  1. 对于小区间 如果能够首尾匹配那么 dp[i][j]=dp[i+1][j-1]+2 因为这是最直接的。
  2. 但是这样不是最准确的。
  3. 对于 ()() 来说 dp[2][3]=0 因为 )( 不匹配。那么用一算出来的 dp[1][4]=0+2=2 是错的,其应该等于 4 .
  4. 所以这就应该进行扫描子区间。 实际最大值应该是
    dp[1][4] = max( dp[1][4] , dp[1][2] + dp[3][4] ) = 4

题解

#include 
#include
#include
#include
using namespace std;int d[105][105];int main(){ char s[105]; while (scanf("%s", s + 1), s[1] != 'e') { memset(d, 0, sizeof d); int len = strlen(s + 1); //先枚举小区间,因为后面计算大区间时需要使用小区间 for (int l = 0; l <= len; l++) { for (int i = 1; i + l - 1 <= len; i++) { int j = l + i - 1; //基本的状态转移 if ((s[i] == '(' && s[j] == ')') || (s[i] == '[' && s[j] == ']')) { d[i][j] = d[i + 1][j - 1] + 2; } //为了找到真正最大的值,进行扫描。 for (int k = i; k < j; k++) { d[i][j] = max(d[i][j], d[i][k] + d[k + 1][j]); } } } cout << d[1][len] << endl; }}

转载于:https://www.cnblogs.com/tttfu/p/11291003.html

你可能感兴趣的文章
window.frameElement的使用
查看>>
nl命令
查看>>
如何使用jQuery $.post() 方法实现前后台数据传递
查看>>
Using Flash Builder with Flash Professional
查看>>
jsp/post中文乱码问题
查看>>
C# 插入或删除word分页符
查看>>
数据库数据的查询----连接查询
查看>>
Git使用教程【转】
查看>>
html图片设置fixed消失,为什么fixed后,DIV7消失了,怎么显示出来?
查看>>
html5隐藏自定义控制按钮,用仿ActionScript的语法来编写html5——第七篇,自定义按钮...
查看>>
找不到可安装的ISAM ,asp.net读取数据丢失,解决的一列里有字符与数字的
查看>>
Java学习笔记三(对象的基本思想一)
查看>>
Bezier贝塞尔曲线的原理、二次贝塞尔曲线的实现
查看>>
Java程序(文件操作)
查看>>
Alignment (DP基础--最长上升子序列)
查看>>
SPF(图的割点)
查看>>
KMP算法的Next数组详解
查看>>
Brackets (区间DP)
查看>>
Tarjan算法
查看>>
Strategic Game(树形DP)
查看>>